Further 6-sparse Steiner Triple Systems

نویسندگان

  • A. D. Forbes
  • Mike J. Grannell
  • Terry S. Griggs
چکیده

We give a construction that produces 6-sparse Steiner triple systems of order v for all sufficiently large v of the form 3p, p prime and p ≡ 3 (mod 4). We also give a complete list of all 429 6-sparse systems with v < 10000 produced by this construction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On 6-sparse Steiner triple systems

We give the first known examples of 6-sparse Steiner triple systems by constructing 29 such systems in the residue class 7 modulo 12, with orders ranging from 139 to 4447. We then present a recursive construction which establishes the existence of 6-sparse systems for an infinite set of orders. Observations are also made concerning existing construction methods for perfect Steiner triple system...

متن کامل

5-sparse Steiner Triple Systems of Order n Exist for Almost All Admissible n

Steiner triple systems are known to exist for orders n ≡ 1, 3 mod 6, the admissible orders. There are many known constructions for infinite classes of Steiner triple systems. However, Steiner triple systems that lack prescribed configurations are harder to find. This paper gives a proof that the spectrum of orders of 5-sparse Steiner triple systems has arithmetic density 1 as compared to the ad...

متن کامل

Properties of the Steiner Triple Systems of Order 19

Properties of the 11 084 874 829 Steiner triple systems of order 19 are examined. In particular, there is exactly one 5-sparse, but no 6-sparse, STS(19); there is exactly one uniform STS(19); there are exactly two STS(19) with no almost parallel classes; all STS(19) have chromatic number 3; all have chromatic index 10, except for 4 075 designs with chromatic index 11 and two with chromatic inde...

متن کامل

Steiner Triple Systems without Parallel Classes

A Steiner triple system of order v (or STS(v)) is a pair (V,B) such that V is a v-set and B is a set of 3-subsets of V (called triples) such that each pair of elements of V occurs in exactly one triple in B. Such a system exists if and only if v ≡ 1 or 3 (mod 6). A parallel class of an STS(6k + 3) is a set of 2k + 1 disjoint triples in the system, and an almost parallel class of an STS(6k + 1) ...

متن کامل

Nonexistence of sparse triple systems over abelian groups and involutions

In 1973 Paul Erdős conjectured that there is an integer v0(r) such that, for every v > v0(r) and v ≡ 1,3 (mod 6), there exists a Steiner triple system of order v, containing no i blocks on i + 2 points for every 1 < i ≤ r . Such an STS is said to be r-sparse. In this paper we consider relations of automorphisms of an STS to its sparseness. We show that for every r ≥ 13 there exists no point-tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009